Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38605684

RESUMO

BACKGROUND: The geroscience hypothesis posits that aging biological processes contribute to many age-related deficits, including the accumulation of multiple chronic diseases. Though only one facet of mitochondrial function, declines in muscle mitochondrial bioenergetic capacities may contribute to this increased susceptibility to multimorbidity. METHODS: The Study of Muscle, Mobility and Aging (SOMMA) assessed ex vivo muscle mitochondrial energetics in 764 older adults (mean age =76.4, 56.5% women, 85.9% non-Hispanic white) by high-resolution respirometry of permeabilized muscle fibers. We estimated the proportional odds ratio (POR [95%CI]) for the likelihood of greater multimorbidity (four levels: 0 conditions, N=332; 1 condition, N=299; 2 conditions, N=98; or 3+ conditions, N=35) from an index of 11 conditions, per SD decrement in muscle mitochondrial energetic parameters. Distribution of conditions allowed for testing the associations of maximal muscle energetics with some individual conditions. RESULTS: Lower oxidative phosphorylation supported by fatty acids and/or complex-I and -II linked carbohydrates (e.g., Max OXPHOSCI+CII) was associated with a greater multimorbidity index score (POR=1.32[1.13,1.54]) and separately with diabetes mellitus (OR=1.62[1.26,2.09]), depressive symptoms (OR=1.45[1.04,2.00]) and possibly chronic kidney disease (OR=1.57[0.98,2.52]) but not significantly with other conditions (e.g., cardiac arrhythmia, chronic obstructive pulmonary disease). CONCLUSIONS: Lower muscle mitochondrial bioenergetic capacities was associated with a worse composite multimorbidity index score. Our results suggest that decrements in muscle mitochondrial energetics may contribute to a greater global burden of disease and is more strongly related to some conditions than others.

2.
Diabetes ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551899

RESUMO

Cardiorespiratory fitness and mitochondrial oxidative capacity are associated with reduced walking speed in older adults. The impact of cardiorespiratory fitness and mitochondrial oxidative capacity on walking speed in older adults with diabetes has not been clearly defined. We examined differences in cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity between older adults with and without diabetes as well as determine their relative contribution to slower walking speed in older adults with diabetes. Participants with diabetes (n=159) had lower cardiorespiratory fitness and mitochondrial respiration in permeabilized fiber bundles when compared to those without diabetes (n=717), following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. 4-m and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walk speed between older adults with and without diabetes. Additional adjustments with BMI and co-morbidities further explained the group differences in walk speed. Cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity contribute to slower walking speeds in older adults with diabetes.

3.
Geroscience ; 46(2): 2409-2424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37987886

RESUMO

BACKGROUND: Phenotypic frailty syndrome identifies older adults at greater risk for adverse health outcomes. Despite the critical role of mitochondria in maintaining cellular function, including energy production, the associations between muscle mitochondrial energetics and frailty have not been widely explored in a large, well-phenotyped, older population. METHODS: The Study of Muscle, Mobility and Aging (SOMMA) assessed muscle energetics in older adults (N = 879, mean age = 76.3 years, 59.2% women). 31Phosporous magnetic resonance spectroscopy measured maximal production of adenosine triphosphate (ATPmax) in vivo, while ex vivo high-resolution respirometry of permeabilized muscle fibers from the vastus lateralis measured maximal oxygen consumption supported by fatty acids and complex I- and II-linked carbohydrates (e.g., Max OXPHOSCI+CII). Five frailty criteria, shrinking, weakness, exhaustion, slowness, and low activity, were used to classify participants as robust (0, N = 397), intermediate (1-2, N = 410), or frail (≥ 3, N = 66). We estimated the proportional odds ratio (POR) for greater frailty, adjusted for multiple potential confounders. RESULTS: One-SD decrements of most respirometry measures (e.g., Max OXPHOSCI+CII, adjusted POR = 1.5, 95%CI [1.2,1.8], p = 0.0001) were significantly associated with greater frailty classification. The associations of ATPmax with frailty were weaker than those between Max OXPHOSCI+CII and frailty. Muscle energetics was most strongly associated with slowness and low physical activity components. CONCLUSIONS: Our data suggest that deficits in muscle mitochondrial energetics may be a biological driver of frailty in older adults. On the other hand, we did observe differential relationships between measures of muscle mitochondrial energetics and the individual components of frailty.


Assuntos
Fragilidade , Masculino , Idoso , Humanos , Feminino , Idoso Fragilizado , Músculos , Envelhecimento , Mitocôndrias , Trifosfato de Adenosina
4.
Artigo em Inglês | MEDLINE | ID: mdl-38150179

RESUMO

The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery (SPPB) score ≤8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (eg, Maximal Complex I&II OXPHOS: Women = 55.06 ± 15.95; Men = 65.80 ± 19.74; p < .001) and in individuals with mobility impairment compared to those without (eg, Maximal Complex I&II OXPHOS in women: SPPB ≥ 9 = 56.59 ± 16.22; SPPB ≤ 8 = 47.37 ± 11.85; p < .001). Muscle energetics were negatively associated with age only in men (eg, Maximal ETS capacity: R = -0.15, p = .02; age/sex interaction, p = .04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, odds ratio [OR]age-adjusted = 1.78, 95% confidence interval [CI] = 1.03, 3.08, p = .038; 80+ age group, ORage-adjusted = 1.05, 95% CI = 0.52, 2.15, p = .89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.


Assuntos
Envelhecimento , Músculo Esquelético , Masculino , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Músculo Quadríceps , Extremidade Inferior
5.
medRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986814

RESUMO

Rationale: Cardiorespiratory fitness and mitochondrial energetics are associated with reduced walking speed in older adults. The impact of cardiorespiratory fitness and mitochondrial energetics on walking speed in older adults with diabetes has not been clearly defined. Objective: To examine differences in cardiorespiratory fitness and skeletal muscle mitochondrial energetics between older adults with and without diabetes. We also assessed the contribution of cardiorespiratory fitness and skeletal muscle mitochondrial energetics to slower walking speed in older adults with diabetes. Findings: Participants with diabetes had lower cardiorespiratory fitness and mitochondrial energetics when compared to those without diabetes, following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. 4-m and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walk speed between older adults with and without diabetes. Further adjustments of BMI and co-morbidities further explained the group differences in walk speed. Conclusions: Skeletal muscle mitochondrial energetics and cardiorespiratory fitness contribute to slower walking speeds in older adults with diabetes. Cardiorespiratory fitness and mitochondrial energetics may be therapeutic targets to maintain or improve mobility in older adults with diabetes. ARTICLE HIGHLIGHTS: Why did we undertake this study? To determine if mitochondrial energetics and cardiorespiratory fitness contribute to slower walking speed in older adults with diabetes. What is the specific question(s) we wanted to answer? Are mitochondrial energetics and cardiorespiratory fitness in older adults with diabetes lower than those without diabetes? How does mitochondrial energetics and cardiorespiratory fitness impact walking speed in older adults with diabetes? What did we find? Mitochondrial energetics and cardiorespiratory fitness were lower in older adults with diabetes compared to those without diabetes, and energetics, and cardiorespiratory fitness, contributed to slower walking speed in those with diabetes. What are the implications of our findings? Cardiorespiratory fitness and mitochondrial energetics may be key therapeutic targets to maintain or improve mobility in older adults with diabetes.

6.
medRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986822

RESUMO

Objective: Examine the association of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. Methods: Cross-sectional data from 829 older adults ≥70 years was used. Total abdominal, subcutaneous, and visceral AT; and thigh muscle fat infiltration (MFI) was quantified by MRI. SM mitochondrial energetics were characterized using in vivo 31 P-MRS (ATP max ) and ex vivo high-resolution respirometry (maximal oxidative phosphorylation (OXPHOS)). ActivPal was used to measure PA (step count). Linear regression models adjusted for covariates were applied, with sequential adjustment for BMI and PA. Results: Independent of BMI, total abdominal (standardized (Std.) ß=-0.21; R 2 =0.09) and visceral AT (Std. ß=-0.16; R 2 =0.09) were associated with ATP max ( p <0.01), but not after further adjustment for PA (p≥0.05). Visceral AT (Std. ß=-0.16; R 2 =0.25) and thigh MFI (Std. ß=-0.11; R 2 =0.24) were negatively associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA ( p <0.05). Total abdominal AT (Std. ß=-0.19; R 2 =0.24) and visceral AT (Std. ß=-0.17; R 2 =0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p<0.05). Conclusions: Skeletal MFI and abdominal visceral, but not subcutaneous AT, are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.

7.
medRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37987007

RESUMO

The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery score ≤ 8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (e.g. Maximal Complex I&II OXPHOS: Women=55.06 +/- 15.95; Men=65.80 +/- 19.74; p<0.001) and in individuals with mobility impairment compared to those without (e.g., Maximal Complex I&II OXPHOS in women: SPPB≥9=56.59 +/- 16.22; SPPB≤8=47.37 +/- 11.85; p<0.001). Muscle energetics were negatively associated with age only in men (e.g., Maximal ETS capacity: R=-0.15, p=0.02; age/sex interaction, p=0.04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, OR age-adjusted =1.78, 95% CI=1.03, 3.08, p=0.038; 80+ age group, OR age-adjusted =1.05, 95% CI=0.52, 2.15, p=0.89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.

8.
J Gerontol A Biol Sci Med Sci ; 78(8): 1367-1375, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462195

RESUMO

BACKGROUND: Mitochondrial energetics are an important property of aging muscle, as generation of energy is pivotal to the execution of muscle contraction. However, its association with functional outcomes, including leg power and cardiorespiratory fitness, is largely understudied. METHODS: In the Study of Muscle, Mobility, and Aging, we collected vastus lateralis biopsies from older adults (n = 879, 70-94 years, 59.2% women). Maximal State 3 respiration (Max OXPHOS) was assessed in permeabilized fiber bundles by high-resolution respirometry. Capacity for maximal adenosine triphosphate production (ATPmax) was measured in vivo by 31P magnetic resonance spectroscopy. Leg extension power was measured with a Keiser press system, and VO2 peak was determined using a standardized cardiopulmonary exercise test. Gender-stratified multivariate linear regression models were adjusted for age, race, technician/site, adiposity, and physical activity with beta coefficients expressed per 1-SD increment in the independent variable. RESULTS: Max OXPHOS was associated with leg power for both women (ß = 0.12 Watts/kg, p < .001) and men (ß = 0.11 Watts/kg, p < .050). ATPmax was associated with leg power for men (ß = 0.09 Watts/kg, p < .05) but was not significant for women (ß = 0.03 Watts/kg, p = .11). Max OXPHOS and ATPmax were associated with VO2 peak in women and men (Max OXPHOS, ß women = 1.03 mL/kg/min, ß men = 1.32 mL/kg/min; ATPmax ß women = 0.87 mL/kg/min, ß men = 1.50 mL/kg/min; all p < .001). CONCLUSIONS: Higher muscle mitochondrial energetics measures were associated with both better cardiorespiratory fitness and greater leg power in older adults. Muscle mitochondrial energetics explained a greater degree of variance in VO2 peak compared to leg power.


Assuntos
Aptidão Cardiorrespiratória , Masculino , Humanos , Feminino , Idoso , Aptidão Cardiorrespiratória/fisiologia , Perna (Membro) , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/fisiologia , Consumo de Oxigênio/fisiologia
9.
Compr Physiol ; 12(2): 3193-3279, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35578962

RESUMO

For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.


Assuntos
Adaptação Fisiológica , Exercício Físico , Exercício Físico/fisiologia , Humanos
10.
PLoS One ; 15(10): e0237138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002037

RESUMO

In Duchenne muscular dystrophy, a lack of dystrophin leads to extensive muscle weakness and atrophy that is linked to cellular metabolic dysfunction and oxidative stress. This dystrophinopathy results in a loss of tethering between microtubules and the sarcolemma. Microtubules are also believed to regulate mitochondrial bioenergetics potentially by binding the outer mitochondrial membrane voltage dependent anion channel (VDAC) and influencing permeability to ADP/ATP cycling. The objective of this investigation was to determine if a lack of dystrophin causes microtubule disorganization concurrent with mitochondrial dysfunction in skeletal muscle, and whether this relationship is linked to altered binding of tubulin to VDAC. In extensor digitorum longus (EDL) muscle from 4-week old D2.mdx mice, microtubule disorganization was observed when probing for α-tubulin. This cytoskeletal disorder was associated with a reduced ability of ADP to stimulate respiration and attenuate H2O2 emission relative to wildtype controls. However, this was not associated with altered α-tubulin-VDAC2 interactions. These findings reveal that microtubule disorganization in dystrophin-deficient EDL is associated with impaired ADP control of mitochondrial bioenergetics, and suggests that mechanisms alternative to α-tubulin's regulation of VDAC2 should be examined to understand how cytoskeletal disruption in the absence of dystrophin may cause metabolic dysfunctions in skeletal muscle.


Assuntos
Distrofina/metabolismo , Mitocôndrias , Músculo Esquelético , Distrofia Muscular de Duchenne/metabolismo , Tubulina (Proteína)/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Metabolismo Energético , Camundongos , Camundongos Endogâmicos mdx , Microtúbulos/metabolismo , Microtúbulos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
12.
J Physiol ; 598(7): 1377-1392, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674086

RESUMO

KEY POINTS: Ninety-eight per cent of patients with Duchenne muscular dystrophy (DMD) develop cardiomyopathy, with 40% developing heart failure. While increased propensity for mitochondrial induction of cell death has been observed in left ventricle, it remains unknown whether this is linked to impaired mitochondrial respiratory control and elevated H2 O2 emission prior to the onset of cardiomyopathy. Classic mouse models of DMD demonstrate hyper-regeneration in skeletal muscle which may mask mitochondrial abnormalities. Using a model with less regenerative capacity that is more akin to DMD patients, we observed elevated left ventricular mitochondrial H2 O2 and impaired oxidative phosphorylation in the absence of cardiac remodelling or overt cardiac dysfunction at 4 weeks. These impairments were associated with dysfunctions at complex I, governance by ADP and creatine-dependent phosphate shuttling, which results in a less efficient response to energy demands. Mitochondria may be a therapeutic target for the treatment of cardiomyopathy in DMD. ABSTRACT: In Duchenne muscular dystrophy (DMD), mitochondrial dysfunction is predicted as a response to numerous cellular stressors, yet the contribution of mitochondria to the onset of cardiomyopathy remains unknown. To resolve this uncertainty, we designed in vitro assessments of mitochondrial bioenergetics to model mitochondrial control parameters that influence cardiac function. Both left ventricular mitochondrial responsiveness to the central bioenergetic controller ADP and the ability of creatine to facilitate mitochondrial-cytoplasmic phosphate shuttling were assessed. These measurements were performed in D2.B10-DMDmdx /2J mice - a model that demonstrates skeletal muscle atrophy and weakness due to limited regenerative capacities and cardiomyopathy more akin to people with DMD than classic models. At 4 weeks of age, there was no evidence of cardiac remodelling or cardiac dysfunction despite impairments in ADP-stimulated respiration and ADP attenuation of H2 O2 emission. These impairments were seen at both submaximal and maximal ADP concentrations despite no reductions in mitochondrial content markers. The ability of creatine to enhance ADP's control of mitochondrial bioenergetics was also impaired, suggesting an impairment in mitochondrial creatine kinase-dependent phosphate shuttling. Susceptibly to permeability transition pore opening and the subsequent activation of cell death pathways remained unchanged. Mitochondrial H2 O2 emission was elevated despite no change in markers of irreversible oxidative damage, suggesting alternative redox signalling mechanisms should be explored. These findings demonstrate that selective mitochondrial dysfunction precedes the onset of overt cardiomyopathy in D2.mdx mice, suggesting that improving mitochondrial bioenergetics by restoring ADP, creatine-dependent phosphate shuttling and complex I should be considered for treating DMD patients.


Assuntos
Cardiopatias , Distrofia Muscular de Duchenne , Animais , Metabolismo Energético , Cardiopatias/metabolismo , Ventrículos do Coração , Humanos , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias/metabolismo , Distrofia Muscular de Duchenne/metabolismo
13.
Am J Physiol Endocrinol Metab ; 318(1): E44-E51, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794260

RESUMO

Sexual dimorphism in mitochondrial respiratory function has been reported in young women and men without diabetes, which may have important implications for exercise. The purpose of this study was to determine if sexual dimorphism exists in skeletal muscle mitochondrial bioenergetics in people with type 1 diabetes (T1D). A resting muscle microbiopsy was obtained from women and men with T1D (n = 10/8, respectively) and without T1D (control; n = 8/7, respectively). High-resolution respirometry and spectrofluorometry were used to measure mitochondrial respiratory function, hydrogen peroxide (mH2O2) emission and calcium retention capacity (mCRC) in permeabilized myofiber bundles. The impact of T1D on mitochondrial bioenergetics between sexes was interrogated by comparing the change between women and men with T1D relative to the average values of their respective sex-matched controls (i.e., delta). These aforementioned analyses revealed that men with T1D have increased skeletal muscle mitochondrial complex I sensitivity but reduced complex II sensitivity and capacity in comparison to women with T1D. mH2O2 emission was lower in women compared with men with T1D at the level of complex I (succinate driven), whereas mCRC and mitochondrial protein content remained similar between sexes. In conclusion, women and men with T1D exhibit differential responses in skeletal muscle mitochondrial bioenergetics. Although larger cohort studies are certainly required, these early findings nonetheless highlight the importance of considering sex as a variable in the care and treatment of people with T1D (e.g., benefits of different exercise prescriptions).


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adulto , Cálcio/metabolismo , Estudos de Casos e Controles , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Caracteres Sexuais , Fatores Sexuais , Adulto Jovem
14.
J Cachexia Sarcopenia Muscle ; 10(3): 643-661, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30938481

RESUMO

BACKGROUND: Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS: Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS: Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS: These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Distrofia Muscular de Duchenne/genética , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo
15.
Am J Physiol Cell Physiol ; 316(3): C449-C455, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624982

RESUMO

Microtubule-targeting chemotherapies are linked to impaired cellular metabolism, which may contribute to skeletal muscle dysfunction. However, the mechanisms by which metabolic homeostasis is perturbed remains unknown. Tubulin, the fundamental unit of microtubules, has been implicated in the regulation of mitochondrial-cytosolic ADP/ATP exchange through its interaction with the outer membrane voltage-dependent anion channel (VDAC). Based on this model, we predicted that disrupting microtubule architecture with the stabilizer paclitaxel and destabilizer vinblastine would impair skeletal muscle mitochondrial bioenergetics. Here, we provide in vitro evidence of a direct interaction between both α-tubulin and ßII-tubulin with VDAC2 in untreated single extensor digitorum longus (EDL) fibers. Paclitaxel increased both α- and ßII-tubulin-VDAC2 interactions, whereas vinblastine had no effect. Utilizing a permeabilized muscle fiber bundle preparation that retains the cytoskeleton, paclitaxel treatment impaired the ability of ADP to attenuate H2O2 emission, resulting in greater H2O2 emission kinetics. Despite no effect on tubulin-VDAC2 binding, vinblastine still altered mitochondrial bioenergetics through a surprising increase in ADP-stimulated respiration while also impairing ADP suppression of H2O2 and increasing mitochondrial susceptibility to calcium-induced formation of the proapoptotic permeability transition pore. Collectively, these results demonstrate that altering microtubule architecture with chemotherapeutics disrupts mitochondrial bioenergetics in EDL skeletal muscle. Specifically, microtubule stabilization increases H2O2 emission by impairing ADP sensitivity in association with greater tubulin-VDAC binding. In contrast, decreasing microtubule abundance triggers a broad impairment of ADP's governance of respiration and H2O2 emission as well as calcium retention capacity, albeit through an unknown mechanism.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Paclitaxel/farmacologia , Vimblastina/farmacologia , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Feminino , Peróxido de Hidrogênio/farmacologia , Cinética , Masculino , Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Permeabilidade/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Tubulina (Proteína)/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
16.
Elife ; 72018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30511639

RESUMO

Impaired angiogenesis is a hallmark of metabolically dysfunctional adipose tissue in obesity. However, the underlying mechanisms restricting angiogenesis within this context remain ill-defined. Here, we demonstrate that induced endothelial-specific depletion of the transcription factor Forkhead Box O1 (FoxO1) in male mice led to increased vascular density in adipose tissue. Upon high-fat diet feeding, endothelial cell FoxO1-deficient mice exhibited even greater vascular remodeling in the visceral adipose depot, which was paralleled with a healthier adipose tissue expansion, higher glucose tolerance and lower fasting glycemia concomitant with enhanced lactate levels. Mechanistically, FoxO1 depletion increased endothelial proliferative and glycolytic capacities by upregulating the expression of glycolytic markers, which may account for the improvements at the tissue level ultimately impacting whole-body glucose metabolism. Altogether, these findings reveal the pivotal role of FoxO1 in controlling endothelial metabolic and angiogenic adaptations in response to high-fat diet and a contribution of the endothelium to whole-body energy homeostasis.


Assuntos
Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/metabolismo , Proteína Forkhead Box O1/deficiência , Obesidade/metabolismo , Animais , Dieta Hiperlipídica , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Glicólise , Homeostase , Gordura Intra-Abdominal/irrigação sanguínea , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos Knockout , Microvasos/metabolismo , Modelos Biológicos , Músculo Esquelético/irrigação sanguínea , Obesidade/sangue , Tamanho do Órgão , Especificidade de Órgãos , Fenótipo , Triglicerídeos/sangue , Regulação para Cima , Remodelação Vascular
17.
Diabetologia ; 61(6): 1411-1423, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29666899

RESUMO

AIMS/HYPOTHESIS: A comprehensive assessment of skeletal muscle ultrastructure and mitochondrial bioenergetics has not been undertaken in individuals with type 1 diabetes. This study aimed to systematically assess skeletal muscle mitochondrial phenotype in young adults with type 1 diabetes. METHODS: Physically active, young adults (men and women) with type 1 diabetes (HbA1c 63.0 ± 16.0 mmol/mol [7.9% ± 1.5%]) and without type 1 diabetes (control), matched for sex, age, BMI and level of physical activity, were recruited (n = 12/group) to undergo vastus lateralis muscle microbiopsies. Mitochondrial respiration (high-resolution respirometry), site-specific mitochondrial H2O2 emission and Ca2+ retention capacity (CRC) (spectrofluorometry) were assessed using permeabilised myofibre bundles. Electron microscopy and tomography were used to quantify mitochondrial content and investigate muscle ultrastructure. Skeletal muscle microvasculature was assessed by immunofluorescence. RESULTS: Mitochondrial oxidative capacity was significantly lower in participants with type 1 diabetes vs the control group, specifically at Complex II of the electron transport chain, without differences in mitochondrial content between groups. Muscles of those with type 1 diabetes also exhibited increased mitochondrial H2O2 emission at Complex III and decreased CRC relative to control individuals. Electron tomography revealed an increase in the size and number of autophagic remnants in the muscles of participants with type 1 diabetes. Despite this, levels of the autophagic regulatory protein, phosphorylated AMP-activated protein kinase (p-AMPKαThr172), and its downstream targets, phosphorylated Unc-51 like autophagy activating kinase 1 (p-ULK1Ser555) and p62, was similar between groups. In addition, no differences in muscle capillary density or platelet aggregation were observed between the groups. CONCLUSIONS/INTERPRETATION: Alterations in mitochondrial ultrastructure and bioenergetics are evident within the skeletal muscle of active young adults with type 1 diabetes. It is yet to be elucidated whether more rigorous exercise may help to prevent skeletal muscle metabolic deficiencies in both active and inactive individuals with type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Adulto , Índice de Massa Corporal , Cálcio/química , Diabetes Mellitus Tipo 1/patologia , Metabolismo Energético , Exercício Físico/fisiologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Insulina/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Músculo Esquelético/patologia , Consumo de Oxigênio , Adulto Jovem
18.
Proc Natl Acad Sci U S A ; 115(7): 1576-1581, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378951

RESUMO

Lipocalin-2 (Lcn2), a critical component of the innate immune response which binds siderophores and limits bacterial iron acquisition, can elicit spillover adverse proinflammatory effects. Here we show that holo-Lcn2 (Lcn2-siderophore-iron, 1:3:1) increases mitochondrial reactive oxygen species (ROS) generation and attenuates mitochondrial oxidative phosphorylation in adult rat primary cardiomyocytes in a manner blocked by N-acetyl-cysteine or the mitochondria-specific antioxidant SkQ1. We further demonstrate using siderophores 2,3-DHBA (2,3-dihydroxybenzoic acid) and 2,5-DHBA that increased ROS and reduction in oxidative phosphorylation are direct effects of the siderophore component of holo-Lcn2 and not due to apo-Lcn2 alone. Extracellular apo-Lcn2 enhanced the potency of 2,3-DHBA and 2,5-DHBA to increase ROS production and decrease mitochondrial respiratory capacity, whereas intracellular apo-Lcn2 attenuated these effects. These actions of holo-Lcn2 required an intact plasma membrane and were decreased by inhibition of endocytosis. The hearts, but not serum, of Lcn2 knockout (LKO) mice contained lower levels of 2,5-DHBA compared with wild-type hearts. Furthermore, LKO mice were protected from ischemia/reperfusion-induced cardiac mitochondrial dysfunction. Our study identifies the siderophore moiety of holo-Lcn2 as a regulator of cardiomyocyte mitochondrial bioenergetics.


Assuntos
Lipocalina-2/fisiologia , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Sideróforos/metabolismo , Animais , Gentisatos/farmacologia , Hidroxibenzoatos/farmacologia , Ferro/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
19.
Adipocyte ; 5(2): 212-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386161

RESUMO

Adipose tissue is classified as either white (WAT) or brown (BAT) and differs not only by anatomical location but also in function. WAT is the main source of stored energy and releases fatty acids in times of energy demand, whereas BAT plays a role in regulating non-shivering thermogenesis and oxidizes fatty acids released from the lipid droplet. The PLIN family of proteins has recently emerged as being integral in the regulation of fatty acid storage and release in adipose tissue. Previous work has demonstrated that PLIN protein content varies among adipose tissue depots, however an examination of endurance training-induced depot specific changes in PLIN protein expression has yet to be done. Male Sprague-dawley rats (n = 10) underwent 8-weeks of progressive treadmill training (18-25 m/min for 30-60 min at 10% incline) or remained sedentary as control. Following training, under isoflurane induced anesthesia epidydmal (eWAT), inguinal subcutaneous (iWAT) and intrascapular brown adipose tissue (BAT) was excised, and plasma was collected. Endurance training resulted in an increase in BAT PLIN5 and iWAT PLIN3 content, while there was no difference in PLIN protein content in endurance trained eWAT. Interestingly, endurance training resulted in a robust increase in ATGL and CGI-58 in eWAT alone. Together these results suggest the potential of a depot specific function of PLIN3 and PLIN5 in adipose tissue in response to endurance training.

20.
Am J Physiol Cell Physiol ; 311(2): C269-76, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27357546

RESUMO

5'-AMP-activated protein kinase (AMPK) is activated as a consequence of lipolysis and has been shown to play a role in regulation of adipose tissue mitochondrial content. Conversely, the inhibition of lipolysis has been reported to potentiate the induction of protein kinase A (PKA)-targeted genes involved in the regulation of oxidative metabolism. The purpose of the current study was to address these apparent discrepancies and to more fully examine the relationship between lipolysis, AMPK, and the ß-adrenergic-mediated regulation of gene expression. In 3T3-L1 adipocytes, the adipose tissue triglyceride lipase (ATGL) inhibitor ATGListatin attenuated the Thr(172) phosphorylation of AMPK by a ß3-adrenergic agonist (CL 316,243) independent of changes in PKA signaling. Similarly, CL 316,243-induced increases in the Thr(172) phosphorylation of AMPK were reduced in adipose tissue from whole body ATGL-deficient mice. Despite reductions in the activation of AMPK, the induction of PKA-targeted genes was intact or, in some cases, increased. Similarly, markers of mitochondrial content and respiration were increased in adipose tissue from ATGL knockout mice independent of changes in the Thr(172) phosphorylation of AMPK. Taken together, our data provide evidence that AMPK is not required for the regulation of adipose tissue oxidative capacity in conditions of reduced fatty acid release.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lipase/metabolismo , Lipólise/fisiologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular , Ácidos Graxos/metabolismo , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...